API 5L X42

API 5L X42

API 5L X42 Steel Pipe is constructed by API Spec 5L, which is designed for pipeline pipes used in the natural gas, water, oil, and petroleum sectors, as well as low and medium pressure vessels and boilers. It is a type of carbon steel pipe classified by material, and the manufacturing technique might be seamless or welded.

API 5L X42 pipe is a micro-alloy pipe made of ultra-low or low carbon steel. Manganese, phosphorus, and sulfur are common alloys used in API 5L X42 pipes. The use of these alloying materials improves the mechanical qualities of the pipe. API 5L X42 ERW gas pipes are high-pressure gas pipelines. These pipes are very resistant to cold, acid, and industrial waste, such as hydrogen sulfide, as well as other highly corrosive situations.

Onshore and offshore pipelines are available in PSL1, PSL2, and Sour Services.

API 5L X42 PSL1, in As Rolled delivery condition.

API 5L X42N/M/Q PSL2 pipe having N, M, and Q delivery conditions.

API 5L X42NS/MS/QS is a sour services pipeline specification.

PRODUCT FEATURES

Application of API 5L X42 Line Pipe

API 5L X42 Welded Pipes are widely used in the petroleum, oil, petrochemical, and natural gas sectors. API 5L X42 Pipe is ideally suited for transporting gas, steam, and fluids such as water and oil from offshore locations to refineries. API 5L gr x42 pipe is utilized in a variety of sectors, including heating, chemical industry, water supply systems, plumbing, power plants, and the pulp and paper industry.

API 5L X42 Pipe Chemical Composition

- Chemical Composition for API 5L X42 PSL 1 pipe with t ≤ 0.984”

Steel Grade

Mass fraction, % based on heat and product analyses a,g

C

Mn

P

S

V

Nb

Ti

max b

max b

max

max

max

max

max

Welded Pipe

X42

0.26

1.3

0.3

0.3

d

d

d

a. Cu ≤ = 0.50% Ni; ≤ 0.50%; Cr ≤ 0.50%; and Mo ≤ 0.15%,
b. For each reduction of 0.01% below the specified maximum concentration for carbon, an increase of 0.05% above the specified maximum concentration for Mn is permissible, up to a maximum of 1.65% for grades ≥ L245 or B, but ≤ L360 or X52; up to a maximum of 1.75% for grades > L360 or X52, but < L485 or X70; and up to a maximum of 2.00% for grade L485 or X70.,
c. Unless otherwise agreed NB + V ≤ 0.06%,
d. Nb + V + TI ≤ 0.15%,
e. Unless otherwise agreed.,
f. Unless otherwise agreed, NB + V = Ti ≤ 0.15%,
g. No deliberate addition of B is permitted and the residual B ≤ 0.001%

- Chemical Composition for API 5L X42 PSL 2 Pipe with t ≤ 0.984”

Steel Grade

Mass fraction, % based on heat and product analyses

Carbon Equiv a

C

Si

Mn

P

S

V

Nb

Ti

Other

CE IIW

CE Pcm

max b

max

max b

max

max

max

max

max

max

max

Welded Pipe

X42M

0.22

0.45

1.3

0.025

0.015

0.05

0.05

0.04

e,l

0.43

0.25

a. SMLS t>0.787”, CE limits shall be as agreed. The CEIIW limits applied if C > 0.12% and the CEPcm limits apply if C ≤ 0.12%,
b. For each reduction of 0.01% below the specified maximum for C, an increase of 0.05% above the specified maximum for Mn is permissible, up to a maximum of 1.65% for grades ≥ L245 or B, but ≤ L360 or X52; up to a maximum of 1.75% for grades > L360 or X52, but < L485 or X70; up to a maximum of 2.00% for grades ≥ L485 or X70, but ≤ L555 or X80, and up to a maximum of 2.20% for grades > L555 or X80.,
c. Unless otherwise agreed Nb = V ≤ 0.06%,
d. Nb = V = Ti ≤ 0.15%,
e. Unless otherwise agreed, Cu ≤ 0.50%; Ni ≤ 0.30% Cr ≤ 0.30% and Mo ≤ 0.15%,
f. Unless otherwise agreed,
g. Unless otherwise agreed, Nb + V + Ti ≤ 0.15%,
h. Unless otherwise agreed, Cu ≤ 0.50% Ni ≤ 0.50% Cr ≤ 0.50% and MO ≤ 0.50%,
i. Unless otherwise agreed, Cu ≤ 0.50% Ni ≤ 1.00% Cr ≤ 0.50% and MO ≤ 0.50%,
j. B ≤ 0.004%,
k. Unless otherwise agreed, Cu ≤ 0.50% Ni ≤ 1.00% Cr ≤ 0.55%, and MO ≤ 0.80%,
l. For all PSL 2 pipe grades except those grades with footnotes j noted, the following applies. Unless otherwise agreed no intentional addition of B is permitted and residual B ≤ 0.001%.

API 5L X42 Pipe Mechanical Properties

- Mechanical Properties for API 5L X42 PSL-1 Pipe

Pipe Grade

Tensile Properties – Pipe Body of SMLS and Welded Pipes PSL 1

Seam of Welded Pipe

Yield Strength a

Tensile Strength a

Elongation

Tensile Strength b

Rt0,5 PSI Min

Rm PSI Min

(in 2in Af % min)

Rm PSI Min

X42

42,100

60,200

c

60,200

a. For intermediate grade, the difference between the specified minimum tensile strength and the specified minimum yield for the pipe body shall be as given for the next higher grade.
b. For the intermediate grades, the specified minimum tensile strength for the weld seam shall be the same as determined for the body using footnote a.
c. The specified minimum elongation, Af, expressed in percent and rounded to the nearest percent, shall be determined using the following equation:
Where C is 1 940 for calculation using Si units and 625 000 for calculation using USC units
Axc   is the applicable tensile test piece cross-sectional area, expressed in square millimeters (square inches), as follows
– For circular cross-section test pieces, 130mm2 (0.20 in2) for 12.7 mm (0.500 in) and 8.9 mm (.350 in) diameter test pieces; and 65 mm2 (0.10 in2) for 6.4 mm (0.250in) diameter test pieces.
– For full-section test pieces, the lesser of a) 485 mm2 (0.75 in2) and b) the cross-sectional area of the test piece, derived using the specified outside diameter and the specified wall thickness of the pipe, rounded to the nearest 10 mm2 (0.10in2)
– For strip test pieces, the lesser of a) 485 mm2 (0.75 in2) and b) the cross-sectional area of the test piece, derived using the specified width of the test piece and the specified wall thickness of the pipe, rounded to the nearest 10 mm2 (0.10in2)
U is the specified minimum tensile strength, expressed in megapascals (pounds per square inch)

- Mechanical Properties for API 5L X42 PSL-2 Pipe

Pipe Grade

Tensile Properties – Pipe Body of SMLS and Welded Pipes PSL 2

Seam of Welded Pipe

Yield Strength a

Tensile Strength a

Ratio a, c

Elongation

Tensile Strength d

Rt0,5  PSI Min

Rm  PSI Min

R10,5IRm

(in 2in)

Rm (psi)

Af %

Minimum

Maximum

Minimum

Maximum

Maximum

Minimum

Minimum

X42, X42R,

X42Q, X42M

42,100

71,800

60,200

95,000

0.93

f

60,200

a. For intermediate grade, refer to the full API5L specification.
b. for grades > X90 refers to the full API5L specification.
c. This limit applies for pies with D> 12.750 in
d. For intermediate grades, the specified minimum tensile strength for the weld seam shall be the same value as was determined for the pipe body using foot a.
e. for pipe requiring longitudinal testing, the maximum yield strength shall be ≤ 71,800 psi
f. The specified minimum elongation, Af, expressed in percent and rounded to the nearest percent, shall be determined using the following equation:
Where C is 1 940 for calculation using Si units and 625 000 for calculation using USC units
Axc   is the applicable tensile test piece cross-sectional area, expressed in square millimeters (square inches), as follows
– For circular cross-section test pieces, 130mm2 (0.20 in2) for 12.7 mm (0.500 in) and 8.9 mm (.350 in) diameter test pieces; and 65 mm2 (0.10 in2) for 6.4 mm (0.250in) diameter test pieces.
–  For full-section test pieces, the lesser of a) 485 mm2 (0.75 in2) and b) the cross-sectional area of the test piece, derived using the specified outside diameter and the specified wall thickness of the pipe, rounded to the nearest 10 mm2 (0.10in2)
–  For strip test pieces, the lesser of a) 485 mm2 (0.75 in2) and b) the cross-sectional area of the test piece, derived using the specified width of the test piece and the specified wall thickness of the pipe, rounded to the nearest 10 mm2 (0.10in2)
   U is the specified minimum tensile strength, expressed in megapascals (pounds per square inch
g. Lower values fo R10,5IRm may be specified by agreement
h. for grades > x90 refers to the full API5L specification.

Dimensions and Sizes of API 5L X42 Line Pipe

NPS

O. D.

Nominal Wall Thickness

 

DN

Inch

mm

SCH5S

SCH10S

SCH10

SCH20

SCH30

SCH40

SCH60

SCH80

SCH100

SCH120

SCH140

SCH160

STD

XS

XXS

 

50

2″

60.3

1.65

2.77

3.91

5.54

8.74

3.91

5.54

11.07

 

65

2 1/2″

73

2.11

3.05

5.16

7.01

9.53

5.16

7.01

14.02

 

80

3″

88.9

2.11

3.05

5.49

7.62

11.13

5.49

7.52

15.24

 

90

3 1/2″

101.6

2.11

3.05

5.74

8.08

5.74

8.08

 

100

4″

114.3

2.11

3.05

6.02

8.58

11.13

13.49

6.02

8.56

17.12

 

125

5″

141.3

2.77

3.4

6.55

9.53

12.7

15.88

6.55

9.53

18.05

 

150

6″

168.3

2.77

3.4

7.11

10.97

14.27

18.26

7.11

10.97

21.95

 

200

8″

219.1

2.77

3.76

6.35

7.04

8.18

10.31

12.7

15.09

18.26

20.62

23.01

8.18

12.7

22.23

 

250

10″

273.1

3.4

4.19

6.35

7.8

9.27

12.7

15.09

18.26

21.44

25.4

28.58

9.27

12.7

25.4

 

300

12″

323.9

3.96

4.57

6.35

8.38

10.31

14.27

17.48

21.44

25.4

28.58

33.32

9.53

12.7

25.4

 

350

14″

355.5

3.96

4.78

6.35

7.92

9.53

11.13

15.09

19.05

23.83

27.79

31.75

35.71

9.53

12.7

 

400

16″

406.4

4.19

4.78

6.35

7.92

9.53

12.7

16.66

21.44

26.19

30.96

36.53

40.49

9.53

12.7

 

450

18″

457.2

4.19

4.78

6.35

7.92

11.13

14.27

19.05

23.83

39.36

34.93

39.67

45.24

 

500

20″

508

4.78

5.54

6.35

9.53

12.7

15.09

20.62

26.19

32.54

38.1

44.45

50.01

 

550

22″

558.8

4.78

5.54

6.35

9.53

12.7

22.23

28.58

34.93

41.28

47.63

53.98

 

600

24″

609.6

5.54

6.35

6.35

9.53

14.27

17.48

24.61

30.96

38.89

46.02

52.37

59.54

 

API 5L X42 Pipe Tolerance

O.D. Tolerance

W.T. Tolerance

X42

D < 60.3mm

+0.41/-0.40mm

D < 73mm

+15%/-12.5%

D ≥ 60.3m

+0.75/-0.40mm

D ≥ 73mm

+15%/-12.5%

API 5L X42 Pipe Material Equivalent

Item

Specification for Line Pipe

Material Grade

PSL1

L290 or x42

Material Grade

PSL2

L290Q or X42Q
L290R or X42R
L290N or X42N
L290Q or X42Q
L290M or X42M

R: As rolled

N: Normalizing rolled, normalized formed, Normalized

Q: Tempered and quenched

M: Thermomechanical rolled or thermomechanical formed

S: Sour Service

Delivery Condition for API 5L X42 Pipes

PSL

Delivery Condition

Material Grade

PSL-1

As-rolled, normalizing rolled, thermomechanical rolled, thermo-mechanical formed, normalizing formed, normalized, normalized, and tempered

X42

PSL-2

As-rolled

X42R

Normalizing rolled, normalizing formed, normalized or normalized, and tempered

X42N

Quenched and tempered

X42Q

Thermomechanical rolled or thermomechanical formed

X42M

Test and inspection of API 5L X42 Line pipes

- Hydrostatic Test

The pipe must be able to survive a hydrostatic test without leaking through the weld seam or the pipe body. Jointers do not need to be hydrostatically tested if the pipe sections utilized have been successfully tested.

- Bend Test

There shall be no cracks in any part of the test piece, nor shall there be any opening of the weld.

- Flattening Test

The flattening test method is used to evaluate and exhibit the deformation performance of line pipe to the prescribed size. The flattening test will reveal the pipe’s resistance to longitudinal and circumferential cracking, as well as its internal and surface faults, based on the stress and deformation characteristics of the specimen during the flattening procedure.

- CVN Impact Test for PSL-2

CVN is required for several PSL2 pipe diameters and grades. The body will be inspected for seamless pipe. The welded pipe must be examined in three areas: the body, the pipe weld, and the heat-affected zone. The chart of sizes and grades, as well as the required absorbed energy values, may be found in the full API 5L specification.

- DWT Test for PSL-2 Welded Pipe

The average shear fracture area for each test (of a set of two test pieces) shall be 85 percent, based on a test temperature of 0°C (32°F) or, if accepted, a lower test temperature. For wall thicknesses greater than 25.4mm (1.000 in. ), DWT test acceptance standards must be agreed upon.

NOTE1: At or above the test temperature, such shear-fracture area assures a suitably ductile fracture.

NOTE2: In gas pipelines, an appropriate combination of shear-fracture area and CVN absorbed energy is an essential pipe-body feature for avoiding brittle fracture propagation and controlling ductile fracture propagation (see Annex G and Table20).

OCTG-supplied-by-Tianjin-United-Steel-Pipe
OCTG
Slotted Liner
Steel Fabrication
pipe-fittings
Pipe Fittings
Scroll to Top

Get A Quote Now

Fill in the form below and our team will be happy to assist you